THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH2060B Mathematical Analysis IT (Spring 2017)
HWT Solution

Yan Lung Li
1. (P.246 Q4)
Case 1: 0 < x < 1: Since lim z" =0, we have the following:
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Case 3: 1 <z < 4oc: Since lim — =0, we have the following:
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2. (P.246 Q8)

We claim that lim ze ™™ =0for all x > 0 :
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Let € > 0 be given, choose N € N such that N < €. Then by the inequality in Example 6.2.10 of the
textbook, e* > 1 + z for all x € R. Therefore, for alln > N, x >0
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which implies xe™™* < € for all n > N. Therefore, for all x > 0, lim ze™ "% = 0.
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3. (P.247 Q14)
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(i) Fix 0 < b < 1, then by (4), for all z € [0,b], lim
n—oo ] 4+ ™
in [0, b]:

= 0. We claim the convergence is uniform



Given € > 0, since lim b" = 0, there exists N € N such that b < e. Then for all n > N, x € [0, b],
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Therefore, the convergence is uniform in [0, ].

(ii) We claim that the convergence is not uniform in [0,1]: By Q4, if the convergence were uniform, the
uniform limit function would be given by
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We use Lemma 8.15 of the textbook to show that f,,(x) = does not converge to f: Since lim (1— =)"=e™" > —,
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there exists N € N such that for all n > N, (1 — E)" >3-
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Choose ¢y = T ng=k+ N,z = 1—m . Then
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Therefore, the convergence is not uniform.

4. (P.247 Q18) Note that the argument in Q8 actually implies the following: For all € > 0, there exists N € N

such that for all n > N, > 0, lim ze™"* = 0. Therefore, the convergence is uniform.
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